商丘一体化污水处理设备出水量
地埋式污水处理设备采用*的AO生物处理工艺,处理效果优于全混合或双系列*混合生物氧化池。此外,它比活污泥池小,对水质具有良好的适应,良好的抗冲击,水质,无污泥产生,并且在生物氧化池中采用新型弹三维材料,具有大的比表面区域和微生物。该膜易于释放,在相同的有机负荷条件下,有机物的去除率高于其他填料,并且埋藏污水处理设备的功能得到进一步改善。
工艺类型
根据膜组件和生物反应器的组合方式,可将膜--生物反应器分为分置式、一体式以及复合式三种基本类型。(以下讨论的均为固液分离型膜--生物反应器)
分置式
把膜组件和生物反应器分开设置。生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内。
分置式膜--生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大。但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高(Yamamoto,1989),并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象(Brockmann and Seyfried,1997)。
一体式
把膜组件置于生物反应器内部。进水进入膜--生物反应器,其中的大部分污染物被混合液中的活污泥去除,再在外压作用下由膜过滤出水。
这种形式的膜--生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,在水处理领域受到了特别关注。但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换。
复合式
形式上也属于一体式膜--生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜--生物反应器,改变了反应器的某些状。
商丘一体化污水处理设备出水量
高级氧化技术又称深度氧化技术,其基础在于运用电、光辐照、催化剂,有时还与氧化剂结合,在反应中产生活性*的自由基(如HO•),再通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子难降解有机物氧化降解成低毒或无毒的小分子物质,甚至直接降解成为CO2和H2O,接近*矿化目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。
1、化学氧化技术
化学氧化技术常用于生物处理的前处理。一般是在催化剂作用下,用化学氧化剂去处理有机废水以提高其可生化性,或直接氧化降解废水中有机物使之稳定化。
1.1 Fenton 试剂氧化法
该技术起源于19世纪90年代中期,由法国科学家H. J. Fenton提出,在酸性条件下,H2O2在Fe2+离子的催化作用下可有效的将酒石酸氧化,并应用于苹果酸的氧化。长期以来,人们默认的Fenton主要原理是利用亚铁离子作为过氧化氢的催化剂,反应产生羟基自由基式为:Fe2++ H2O2 ——Fe3++OH-+•OH, 且反应大都在酸性条件下进行。
在化学氧化法中,Fenton法在处理一些难降解有机物(如*类、苯胺类)方面显示出一定的*性。随着人们对Fenton法研究的深入,近年来又把紫外光(UV)、草酸盐等引入Fenton法中,使Fenton法的氧化能力大大增强。
用UV + Fenton法对氯酚混合液进行了处理,在1h内TOC去除率达到83.2%。Fenton法氧化能力强、反应条件温和、设备也较为简单,适用范围比较广,但存在处理费用高、工艺条件复杂、过程不易控制等缺点,使得该法尚难被推广应用。
当出水不允许排放,需要回用和实现“*”时,由于纳滤出水中氯离子不能达到回用水标准要求,因此膜系统应选择采用反渗透膜或者“纳滤+DTRO膜”组合膜工艺。出水可达到《城市污水再生利用工业用水水质》(GB/T19923-2005)中的敞开式循环冷却水系统补充水标准以及和《城市污水再生利用城市杂用水水质》(GB/T18920-2002)道路清扫、城市绿化、车辆冲洗标准,回用水可用于焚烧厂冷却系统补水和厂区的道路清扫、车辆冲洗以及绿化灌溉
。
生物再生法
方法:生物再生是利用微生物将吸附在活性炭上的污染物质氧化降解。微生物的分解效果在于:在活性炭颗粒周围生长了一层嫌气性生物膜,分解被吸附的高分子物质或者生物分解度低的物质。通过这种作用使难于被吸附的分解产物解吸,再通过外侧的好气性微生物而被氧化。
特点:生物法简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大。微生物处理污染物的针对性很强,需特定物质专门驯化。且在降解过程中一般不能将所有的有机物*分解成CO2 和H2O,其中间产物仍残留在活性炭上,积累在微孔中,多次循环后再生效率会明显降低。
水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理*和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。
水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。
由于该岗位水解酸化池的污泥来自污水处理站SBR的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。
总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。在考虑到后续好氧处理的能耗问题,水解酸化就主要用于低浓度难降解废水的预处理了