邢台一体化污水处理设备报价
不管您是山南的还是海北的
海南的还是黑龙江的!
新疆的还是浙江的!
不管你们距离物美有多远,我们都可以把设备给你们运过去
没见过我们也没关系!可以货到付款!
你们还有什么不放心的呢!
邢台一体化污水处理设备报价
一体化污水处理设备
厌氧反应器+生物接触氧化
近年来, 城市生活污水呈现出低碳氮比的趋势, 造成污水处理脱氮困难。有人采用ABR-生物接触氧化工艺对低碳氮比生活污水进行试验研究,结果表明,TN的平均去除率随着碳氮比的减小而迅速降低,当原水COD/N为6~7时,去除率达到80% 以上,出水TN小于15mg/L,满足城镇污水处理厂污染物排放标准(GB18918-2002)一级A标准。也有人采用UASB-BCO工艺在低温条件下处理生活污水,运行结果表面,UASB-BCO工艺在低温条件下依然具有良好的处理效果,在水力停留时间为6.83h、温度在8℃~25℃的条件下,COD、BOD5和SS的去除率较高,均在80%以上;但是低
温条件下,脱氮除磷效果不够理想,尤其是总磷的去除率较低,只有3.00%~21.68%。
厌氧+人工湿地
何成达等将厌氧悬浮填料床和波式潜流人工湿地工艺串联起来,试验结果表明:当厌氧床的HRT为3h、波式潜流湿地的HRT为5.6d时,该系统能够同时高效去除生活污水中COD、TN、NH4+-N、TP和SS等污染物,出水水质优于城镇污水处理厂污染物排放标准(GB18918-2002) 中一级B标准;冬季低温期间系统处理效果有一定程度下降,但未出现恶化现象。在宁波某山区农村100m3/d生活污水治理项目中,采用厌氧接触氧化/垂直流人工湿地组合工艺处理该村生活污水,组合工艺流程如图2所示,在池内氧化区安装软性填料以增加池中的生物量,强化对COD去除作用,污水设计停留时间10h,并在氧化池后段设置沉淀区。该系统经过调试,1个月后进入稳定运行,污水中COD、TN、TP去除率达92.2%、75.6%、93.3%,终出水水质的主要指标达到城镇污水处理厂污染物排放标准 (GB18918-2002)中一级A标准。
什么是厌氧生物滤池
厌氧生物滤池是装有填料的厌氧生物反应器,英文是Anaer-obic Filter,简写为AF。其基本特征就是在反应器内装填了为微生物提供附着生长的表面和悬浮生长的空间的载体。和好氧淹没式生物滤池(好氧接触氧化法)相似,在厌氧生物滤池填料的表面有以生物膜形态生长的微生物群体,构成了厌氧生物滤池厌氧微生物的主要部分,而被截留在填料之间的空隙中、悬浮生长的厌氧活性污泥中的微生物群体,是厌氧生物滤池厌氧微生物的次要部分。污水流过填料层时,其中有机物被厌氧微生物截留、吸附及代谢分解,后达到稳定化,同时产生沼气、形成新的生物膜。为了分离处理水中携带的脱落的生物膜,通常需要在滤池后设置沉淀池。
厌氧生物滤池比表面积很大的填料上生物膜厚度约1~3mm,加上悬浮生长的微生物,池内生物固体量可达到20~30g/L。再加上生物膜停留时间长(平均可达100d左右),因而可承受较高的容积负荷,CODcr容积负荷一般为2~16kgCODcr/(m3·d),而且抗冲击负荷能力较强。厌氧微生物以固着生长的生物膜为主,不易流失,因此除了正常的进出水或适当回流部分出水外,不需要污泥回流和使用搅拌设备。和UASB法相比,厌氧生物滤池另一个优点是系统启动或停运后的再启动时比较容易,所需时间较短。
厌氧生物滤池的类型有哪些
按其中水流方向,厌氧生物滤池可分为升流式厌氧生物滤池和降流式厌氧生物滤池两大类。如图4—35所示。
厌氧生物滤池内生物固体浓度随填料高度的不同,存在很大的差别。升流式厌氧生物滤池底部的生物固体浓度有时是其顶部生物固体浓度的几十倍,因此底部容易出现部分填料间水流通道堵塞、水流短路现象。而降流式厌氧生物滤池向下的水流有利于避免填料层的堵塞,其中生物固体浓度的分布比较均匀。
经验表明,在相同的水质条件和水力停留时间下,升流式厌氧生物滤池的C0Dcr,去除率要比降流式厌氧生物滤池高,因此实际运用中的厌氧生物滤池多采用升流式厌氧生物滤池。
厌氧反应器经历了三代发展:代反应器,废水 与厌氧污泥*混合,以普通厌氧消化池为代表;第二代反应器,可以将固体停留时间和水力停留时间分离,注重培养颗粒污泥,代表反应器有上流式厌氧污泥床反应器(UASB);第三代反应器,在固体停留时间和水力停留时间相分离的前提下,既能保有大量污泥又能使废水和活性污泥充分混合。厌氧折流板式反应器(ABR)属于第三代厌氧反应器,是20世纪80年代初由美国学者P. L. McCarty所开发的。反应器内设置了垂直于水流方向的导流板,可将整个反应器分隔为几个反应室,废水由导流板引导上下折流依次通过各个格室,每个格室又是相对独立的上流式污泥床系统。
与此同时,厌氧消化两阶段理论演变为三阶段理论,两阶段理论把厌氧消化过程分为酸性发酵和碱性发酵过程,而三阶段理论则由水解、酸化和产甲烷阶段组成。目前,三阶段理论被认为是研究厌氧消化方面的主要依据。参与三阶段厌氧消化菌群的相关理论被归纳为四菌群学说,在阶段由水解菌、发酵菌将大分子的有机物分解为简单的小分子有机物,如纤维素水解为小分子糖类,蛋白质水解为氨基酸,脂肪水解为脂肪酸和甘油。第二阶段中产氢产乙酸菌和同型产乙酸菌将阶段的水解产物进一步转化为乙酸、CO2和H2 等小分子物质。在第三阶段中产甲烷菌则利用前面两个阶段的产物将有机物降解为甲烷和二氧化碳气体等。厌氧消化理论的发展引导了厌氧反应器的研究和进展方向。
什么是废水的三级处理?使用哪几种处理方法?
三级处理是在一级处理、二级处理之后,进一步处理难降解的有机物及可导致水体富营养化的氮磷等可溶性无机物等。三级处理有时又称深度处理,但两者又不*相同。三级处理常用于二级处理之后,以进一步改善水质和达到国家有关排放标准为目的,而深度处理则以污水的回收和再利用为目的,在一级、二级甚至三级处理后增加的处理工艺。
废水的活性污泥法处理工艺是我国应用广泛的一种废水好氧处理技术,经过多年的发展,传统的活性污泥法已发展出许多改进的废水处理工艺,如推流式活性污泥工艺、分段曝气活性污泥工艺等,为了对废水进行脱氮除磷处理,又发展了氧化沟工艺、A/O、A2/O工艺等等。尽管如此,活性污泥法始终具有一些难以克服的缺点,如污染物处理负荷比较低、脱氮除磷的效率不高、动力消耗过大、剩余污泥产量过大等问题。
污水活性污泥处理过程中会产生大量的剩余污泥,数量可达到污水处理量的0.3%~0.5%(以含水率97%计)[1].剩余污泥除了具有含水率高、 易腐烂、 恶臭等特征外,还含有大量的病原菌、 寄生虫、 重金属和二 英、 苯并芘等难以降解的有毒、 有害、 致癌物质,极易对土壤、 地下水等造成二次污染.厌氧消化处理是对剩余污泥进行稳定化、 减量化和资源化过程中被广泛采用的处理手段,具有能耗低、 污泥稳定性好、 产生生物能源沼气等优点[3].影响剩余污泥厌氧消化过程的因子包括基础因素(厌氧污泥组成、 浓度、 污泥负荷等)和环境因素(pH、 ORP、 抑制性物质等)两大类,其中厌氧污泥的生物相组成和代谢活性对厌氧消化处理的过程进展发挥着重要的作.在剩余污泥厌氧消化过程中,由于微生物构成、 对基质的适应性和接种量的不同,采用不同的接种厌氧污泥会对剩余污泥产CH4生成势形成不同程度的影响.深入探究剩余污泥厌氧消化过程中产CH4生成势与菌群动态变化的关系,一方面可对厌氧消化过程中剩余污泥的生化降解过程和产CH4潜能进行评价[7],另一方面也能为剩余污泥厌氧消化工艺的关键操作参数优化提供依据
剩余污泥厌氧消化的效率在很大程度上取决于厌氧微生物种群多样性及优势种群的活性[10,11].不同条件下厌氧消化运行的稳定性及效率与系统群落结构的变迁会存在一定的关联.厌氧污泥中主要存在水解发酵菌、 产氢产乙酸菌、 产甲烷菌及盐还原菌.其中产甲烷菌属于典型的古细菌,大致可以分为两类:一类主要利用乙酸产生甲烷,主要有产甲烷八叠球菌(Methanosarcina)和产甲烷髦毛菌(Methanothrix); 另一类利用氢和二氧化碳合成甲烷.由于传统微生物培养、 鉴定的局限性,近年来研究人员尝试应用基于16S rRNA的分子生物学技术(变性梯度凝胶电泳、 克隆文库技术、 荧光原位杂交)对厌氧污泥系统群落结构的变化进行分析.其中末端限制性片段多态性(terminal-restriction fragment length polymorphism, T-RFLP)根据PCR扩增产物片断的大小不同以及标记片断种类和数量的不同来分析群落的结构及组成. T-RFLP技术对接种污泥和接种后的污泥中微生物菌群变化进行研究后发现接种污泥中占优势的产甲烷菌群是Methanosarcinales、 Methanobacteria和Proteobacteria,而反应器运行稳定后占优势的菌群为Methanosarcina vacuolata和Methanobacterium palustre.T-RFLP技术可以很灵敏地检测微生物种类的微小变化,能够提供微生物种群结构和数量动态变化的信息,已成功应用于厌氧污泥产CH4菌的群落结构、 动态变化的检测等方面.
什么是厌氧复合床反应器
厌氧复合床反应器实际是将厌氧生物滤池AF与升流式厌氧污泥反应器UASB组合在一起,因此又称为UBF反应器。
厌氧复合床反应器下部为污泥悬浮层,而上部则装有填料。可以看做是将升流式厌氧生物滤池的填料层厚度适当减小,在池底布水系统与填料层之间留出一定的空间,以便悬浮状态的颗粒污泥能在其中生长积累,因此又构成一个UASB处理工艺。当污水依此通过悬浮污泥层及填料层,有机物将与污泥层颗粒污泥及填料生物膜上的微生物接触并被分解掉。与厌氧生物滤池相比,减少了填料层的高度,也就减少了滤池被堵塞的可能性;与UASB法相比,可不设三相分离器,使反应器构造与管理简单化。填料层既是厌氧微生物的载体,又可截留水流中的悬浮厌氧活性污泥碎片,从而能使厌氧反应器保持较高的微生物量,并使出水水质得到保证。厌氧复合床反应器中填料层高度一般为反应区总高度的2/3,而污泥层的高度为反应区总高度的1/3。
厌氧复合床反应器特点有哪些
厌氧复合床反应器综合了厌氧生物滤池与升流式厌氧污泥反应器的优点,克服了它们的缺点,不但增加了生物量,而且提高了反应区的容积利用率,反应器的总高度可大于10m,从而减少了占地面积,处理能力也有较大提高。
因此,新建厌氧处理装置好选用这种复合型式,实际应用中可以结合具体情况,将原厌氧生物滤池与升流式厌氧污泥反应器进行适当改造,即便不能提高处理效率,也可以起到便于操作管理的作用。比如在升流式厌氧污泥反应器的上部加设填料,可以不设三相分离器,使反应器构造简单化;将厌氧生物滤池下部的填料去掉一些,可以减少滤池被堵塞的可能性。
厌氧+好氧
厌氧反应器+SBR
SBR工艺构造简单,为集成化模块结构,投资省。SBR的曝气、沉淀在同一池内省去了二沉池和回流装置等设施。因此,基建投资较低,占地面积可缩小1/3~1/2,基建投资可减少20%~40%,从节省投资与运行成本上讲两种工艺联用是可行的。
采用UASB-SBR工艺处理城市生活污水,SBR后出水的COD、SS和TN均能达到城镇污水处理厂污染物排放标准(GB18918-2002)中一级A标准;出水的NH4+-N和TP的不稳定,为0~6和0 . 0 1 3 m g / L ~ 2 . 0 2 m g / L ; P . T o r r e sand E. Foresti 同样采用此工艺,研究结果:采用UASB-SBR比单独采用UASB对C O D 、S S 的去除率从6 3 %~ 7 7 %、39%~78%提高到91%、84%,N、P的去除和曝气时间有关。
厌氧反应器+生物滤池
采用U A S B + T F(trickling filter)工艺,TF后出水的COD、BOD5和SS分别为102±19、33±6和19±12mg/L,这与文献的研究结果*。同时研究了把一部分TF的好氧污泥回流到UASB反应器。结果显示:回流好氧污泥后对UASB反应器的性能没有任何影响,且UASB中COD的去除率由70%增加到75%,但是BOD5的去除率有所下降;TF后出水的COD、BOD5和SS分别为82±539、27±14和17±13mg/L,平均去除效果比没有污泥回流时好,但是出水指标波动性大,处理效果不稳定。
厌氧生物滤池特点及适用水质是什么
(1)厌氧生物滤池内的污泥由固定生长的生物膜形态的微生物群体和悬浮生长的厌氧活性污泥中的微生物群体组成,污泥浓度可达20—30g/L。因为微生物生长在填料上,不随出水流失,因此延长了污泥的停留时间即泥龄,从而在相同的处理效果时,就缩短了废水在反应器内的水力停留时问。而且不需要污泥回流,使运行管理相对简便,停止运行后再启动也比较容易。
(2)和普通厌氧消化池和厌氧接触法容积负荷一般为5 kgC0Dcr/(n13·d)以下相比,AF厌氧生物滤池在处理溶解性高浓度有机工业废水时,容积负荷可以高达16kgC0Dcr/(m3·d),使反应器的容积大大减小。一般认为,在温度等外界条件相同的情况下,AF的负荷可高出厌氧接触法的2~3倍,而且具有较高的C0Dcr去除率。
(3)在进水处(比如AF厌氧生物滤池的底部),厌氧微生物能得到充足的营养,因而污泥浓度也高,有的可达60g/L,污泥浓度随着高度的增加而迅速减少。因此AF的去除率主要在底部进行,大部分的C0Dcr是在O.3m以内去除的,底部lm以上C0Dcr的去除率几乎不再增加。
(4)厌氧污泥在AF内的分布规律使得反应器对有毒物质的适应能力更强,在AF内易于培养出适应有毒物质的厌氧污泥,可生物降解的毒性物质在反应器内的浓度也呈现出规律性的变化。因此,在处理水量和负荷有较大变化的情况下,其运行可以保持较大的稳定性。
(5)厌氧生物滤池的挂膜启动方法与UASB法基本相同,可采用直接培养或问接培养法。但由于有填料作为载体,显得较为容易一些,在各种条件都适合的情况下,一般只需要l~2个月即可。
(6)厌氧生物滤池可应用于各种不同类型的废水,包括生活污水及C0Dcr,浓度由3000~24000mg/L不等的工业废水。由于悬浮杂质的存在容易出现堵塞问题,AF适用于处理污染物主要是可溶性有机物的工业废水。